Switchgrass as a Potential Commercial Pellet Fuel in Ontario: Delayed Harvest Study Results

Stephanie Bailey Stamler, Roger Samson Resource Efficient Agricultural Production (REAP)-Canada Toronto, Ontario; www.reap-canada.com sbailey@reap-canada.com

REAP-Canada

- Providing leadership in the research and development of sustainable agricultural biofuels and bioenergy conversion systems for greenhouse gas mitigation
- > 17 years of R & D on energy crops for liquid and solid biofuel applications

> Working in China, Philippines and West Africa

on bioenergy and rural development projects

Warm Season Grasses

C4 Grasses such as switchgrass are ideal bioenergy crops

- Moderate to high productivity
- Stand longevity
- > Drought tolerant
- High nutrient use efficiency
- Low cost of production
- Adaptability to marginal soils
- Benefit biodiversity and soil fertility

Developing Switchgrass Pellets for Energy Since 1991

- Relatively easy crop to grow and produce into pellets for thermal energy
- Thermal energy from SG pellets is leading strategy to provide GHG offsets and energy security for Ontario
- Main outstanding challenge has been how to burn without causing: 1) clinker and boiler corrosion, and 2) ambient air pollution

Biomass Quality of Switchgrass vs. Wood Pellets and Wheat Straw

Unit	Wood Wheat		Switchgrass	
	pellets	straw	Fall harvest	Overwintered Spring harvest
Energy (GJ/t)	20.3	18.6-18.8	18.2-18.8	19.1
Ash (%)	0.6	4.5	4.5-5.2	2.7-3.2
N (%)	0.30	0.70	0.46	0.33
K (%)	0.05	1.00	0.38-0.95	0.06
CI (%)	0.01	0.19-0.51	n/a	n/a

Source: Samson et al., 2005

Delayed Harvest Cause Important Losses

SG Research in Quebec (Girouard and Samson 1997) and Pennsylvania (Adler et al., 2006) indicated recovered spring biomass is 46% and 49% of fall biomass using a mower conditioner and baling system

Losses come from:

- Loss of cell solubles (~7-10%)
- Field breakage (~20-25%)
- Harvest system losses (~20-25%)

Switchgrass Harvest Study

Location: 8 yr old Cave in Rock switchgrass field near Arnprior ~2650 CHU

Treatments: Fall mow & spring bale vs. spring mow & bale –side by side paired comparison with 6 reps

Main parameters assessed:

Machine harvest yields, Unrecovered biomass residues, biomass quality changes

Harvest Experimental Design

Fall Mow, Spring Bale:

- Fall mow took place on November 25th, 2006
 - > 12' disc mower conditioner, cut height of 10.1 cm
- > Spring baling operations took place on May 3, 2007
 - > Raking was performed prior to baling

Spring Mow, Spring Bale:

➤ Spring mowing and baling operations took place on May 3rd and 4th, 2007

> No raking necessary

Fall Switchgrass Harvest

Harvest Period and Biomass Composition Changes

Biological	Fall m.c.	Composition		
Biological Component	(%)	Fall 2006	Spring 2007	
Head	4	12.5 %	5.2%	
Leaf	15	25 %	13.2%	
Sheath	13	14.8 %	17.9%	
Stem	25	47.7 %	63.7%	

Whole plant moisture content was reduced to ~7% at baling in the spring

Where Are We Primarily Losing Biomass Through Overwintering?

Botanical Component	Fall yield (kg/ha)	Spring yield (kg/ha)	Net loss (kg/ha)	Net loss (%)
Head	1,363	364	999	73%
Leaf	2,725	924	1,801	66%
Leaf sheath	1,613	1,253	360	22%
Stem	5,199	4,459	740	14%
Total	10,900	7,000	3,900	36%

1. Fall Mow, Spring Bale Mowed section was too wide for baler pickup so raking was used

2. Spring Mow & Bale

No raking was employed but shattering losses occurred during mowing which could not be harvested by baler

Machine Harvested Recovered Yields

Treatment	Yield (ODT/ha)	Moisture Content (%)	Bale Density (kg/m3)
Fall mow & spring bale	6.57*	6.0	116.8*
Spring mow & bale	5.44	7.8	109.3

*Significantly different (p<0.05)

Field Operation Losses

- 1. Fall mow, Spring baled-total field loss 1688 kg/ha
 - Mainly non-uniformly distributed long pieces of switchgrass (primarily raking misses-in dead furrows and

tire tracks)

- 2. Spring mow and baled-total field loss **2072 kg/ha**
 - Uniformly distributed small pieces of switchgrass fibre covering the plot (shattering losses from mowing)

Biomass Quality

Parameter	Control (Fall 2006)	1. Fall mow & spring bale	2. Spring mow & bale
Energy (GJ/t)	18.6	18.7	18.8
Ash (%)	4.63	5.20	4.30
N (%)	0.47	0.39	0.38
P (%)	0.08	0.05	0.04
K (%)	0.33	0.11	0.10

No major quality differences between fall and spring mowing. Main quality change was ~70% reduction in potassium from fall 2006 composite which was 0.33%K

Ash and Energy Content of Overwintered Switchgrass

Plant Component	Ash Content	Energy Content (GJ/ODT)
Stems	1.03%	19.6
Seed Heads	2.38%	19.5
Leaf Sheaths	3.07%	18.7
Leaves	6.98%	18.4

^{*}Overall weighted SG average ash content of 2.75% and 3.25% on sandy and clay sites respectively (Samson *et al*, 2005)

Further Improvements in Biomass Quality

- Increase stem content through breeding or use high stem species like big bluestem
- Avoid clay soils which are high in silicic acid (and create high ash feedstocks)
- Fractionate grasses and use stems for residential pellet markets and higher ash plant components for commercial/industrial markets

Summary

New system of fall mowing and spring baling is highly promising

- 21% increase in yield: attributed to reduced winter breakage and shattering losses during machine operations
- Promotes earlier soil warming & increases harvest window for farm machinery and enables ideal harvest moisture
- Overall losses can be improved further through improving mowing technique (needs to be nonwavy and facilitate baling without raking)

Summary (Continued)

- Biomass quality of overwintered switchgrass appears to be the best to date of all agri-fibre fuels we have examined
- There are no major agronomic or combustion constraints for developing switchgrass fuel pellets in Ontario
- Federal and Ontario government need to create incentives for farmers to develop this promising opportunity

www.reap-canada.com