Switchgrass for BioHeat in Canada

Roger Samson Resource Efficient Agricultural Production (REAP)-Canada Ste Anne de Bellevue, Quebec rsamson@reap-canada.com

REAP-Canada

- Providing leadership in the research and development of sustainable agricultural biofuels and bioenergy conversion systems for greenhouse gas mitigation
- I7 years of R & D on energy crops for liquid and solid biofuel applications
- Working in China, Philippines and West Africa on bioenergy and rural
- development projects

Optimizing Bioenergy Development for Energy Security

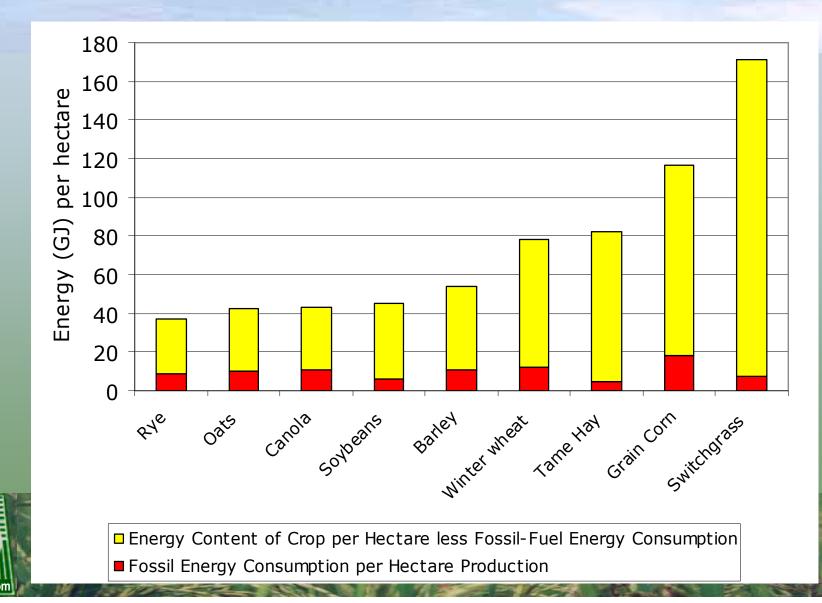
To economically provide large amounts of renewable energy from biomass we must:

- 1. As efficiently as possible capture solar energy over a large area
- 2. Convert this captured energy as efficiently as possible into useful energy forms for energy consumers

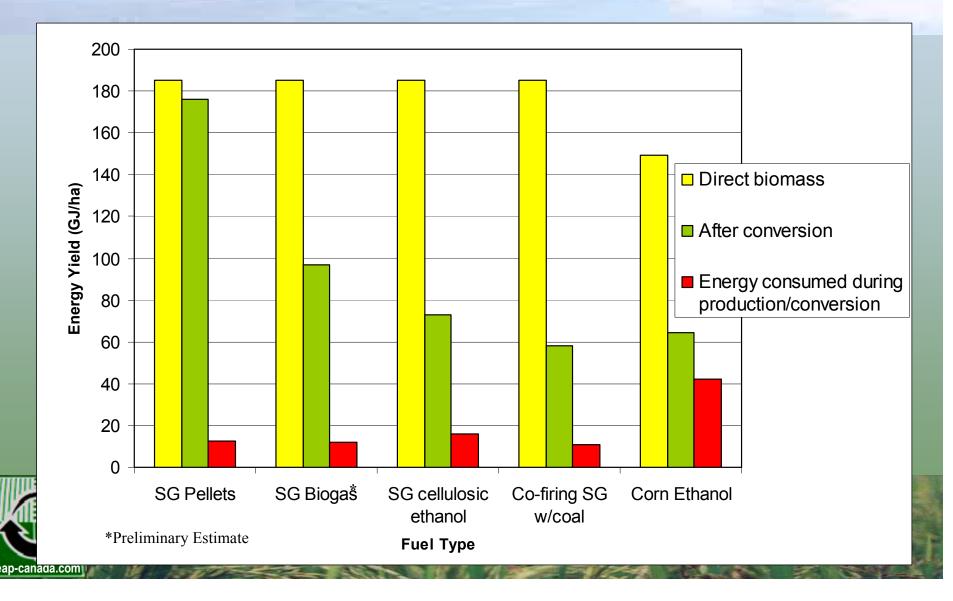
Bioenergy Follows the Emergence of Food Production Systems

- 10,000 years ago humans learned to grow food from the land as a response to exhaustion of food supplies from hunter gatherer lifestyle
- Today bioenergy is emerging as a response to exhaustion of fossil energy supplies
- One of the greatest challenges of humanity is to create resource efficient bioenergy systems from our agricultural lands

Biofuels Research at REAP-Canada began in 1991


Comparing C3 and C4 plants

Cool season (C3) Plants

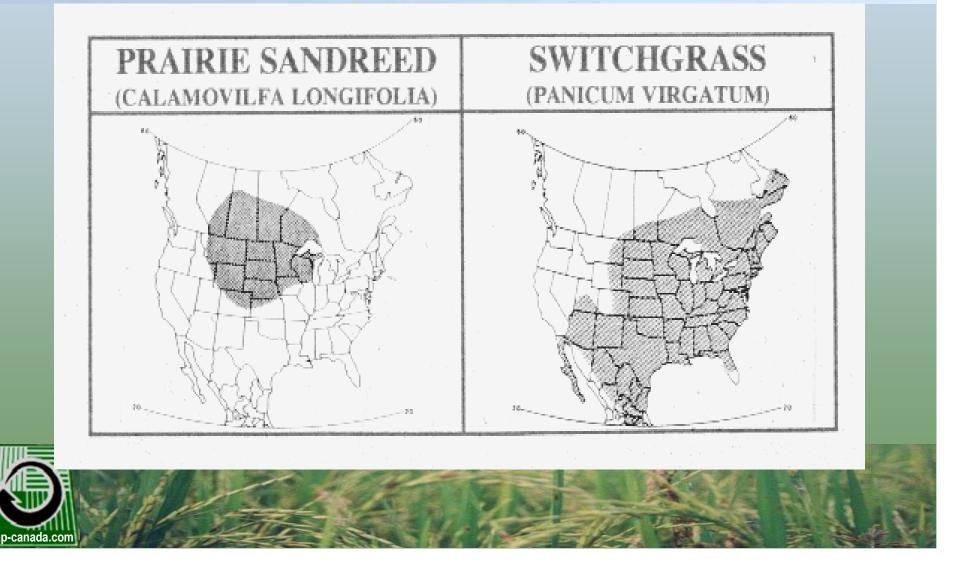

- Greater chilling tolerance
- Utilize solar radiation effectively in spring and fall
 Warm season (C4) Plants
- Higher water use efficiency (typically 50% higher)
- Can utilize solar radiation 40% more efficiently under optimal conditions
- Improved biomass quality: lower ash and increased holocellulose and energy contents
- Responsive to warming climate

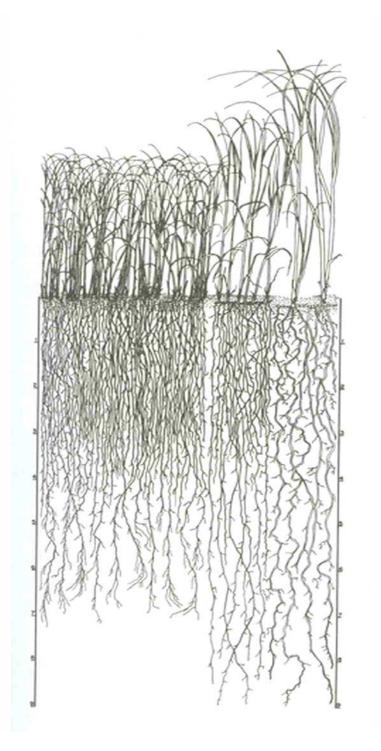
Solar Energy Collection and Fossil Fuel Energy Requirements of Ontario Crops/ha (Samson et al., 2005)

Thermodynamics of Switchgrass (SG) Energy Conversion Pathways

Warm Season Grasses

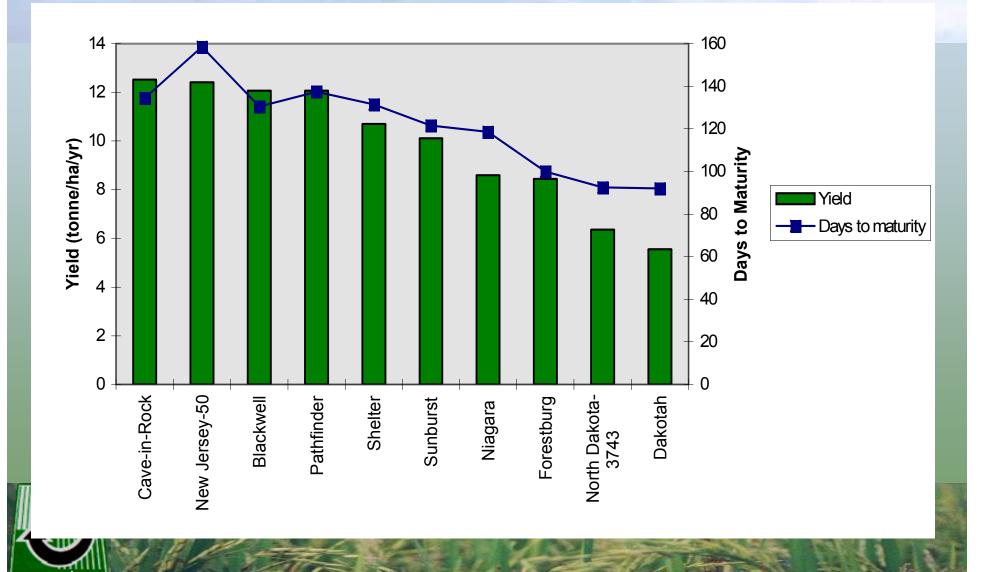
C4 Grasses such as switchgrass are ideal bioenergy crops because of their moderate to high productivity, stand longevity, high moisture and nutrient use efficiency, low cost of production and adaptability to marginal soils.


Switchgrass: a multi-use biomass crop


Normalized N
12.50 - Constants Des Tantas - Constants - Constant -

Biofuel pellets and briquettes Biogas (CHP) Cellulosic ethanol Livestock bedding Paper Straw bale" Housing

Native Range of Promising Warm Season Grass Biomass Feedstocks

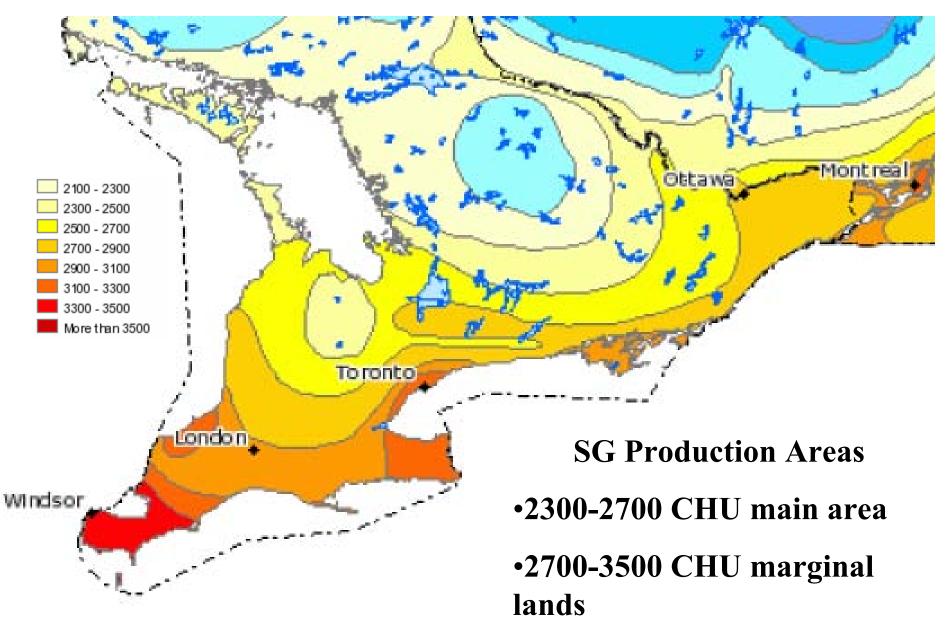


Big Bluestem in New York

Coastal Panic Grass in Pennsylvania

Fall Yield of Switchgrass Cultivars at Ste. Anne de Bellevue, Quebec (1993-1996)

ean-canada.co


2008 Switchgrass Varieties for Canada

(guideline for hardiness and productivity)

Maturity	Days to Maturity	Cultivar name	Cultivar Origin (state, degree)	Corn Heat Unit (CHU) requirements
Very Early	95	Dakotah	N. Dakota (46)	2200
Early	100-105	Forestburg	S. Dakota (44)	2300
Mid	115-120	Sunburst Summer	S. Dakota (44) Nebraska (41)	2400
	125	Shelter	W. Virginia (40)	2500
Late	130	Cave in Rock	S. Illinois (38)	2600
Very Late	150	Carthage	N. Carolina (35)	2700

Identifying a Land Base

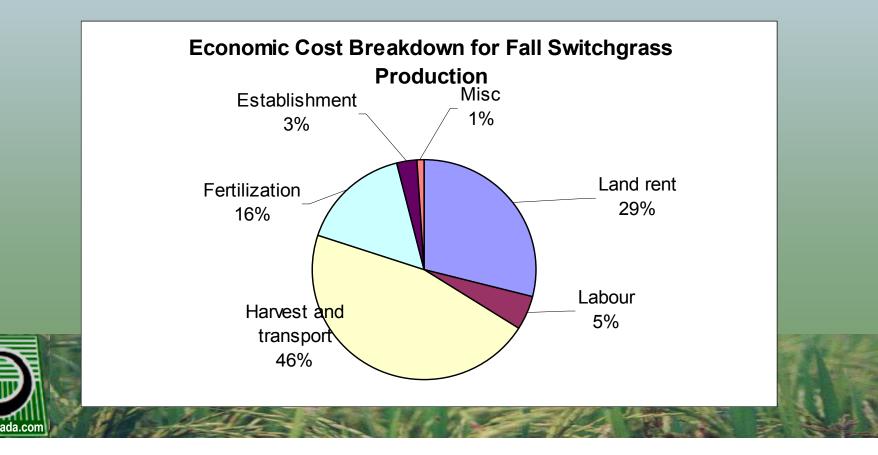
Switchgrass Management

REAP SG Production guide

- Good site selection and weed control especially in northern locations
- Typically 50 kg N/ha and no P, K or lime
- Mow after senescence at 4" (10cm) to help ensure winter survival

Switchgrass Harvesting Operations

Pelleting Facility


Bale Transport

Bale processing at a pellet mill

Economics of Switchgrass Production in Eastern Canada

Spring harvesting
 \$61-81CDN/tonne

Producing Rural Energy in Eastern Canada at \$ 7/GJ

Energy grasses grown for \$85/tonne or \$4.75/GJ
Densification at \$40/tonne or \$2.25/GJ
On-farm fuel at \$125/tonne or \$7.00/GJ

Incentives will be needed to help market development versus coal and natural gas

Bioenergy Capital Costs Investment Requirements

(\$ per GJ Output Energy plant)

Grass Pellet \$5/GJ

\$6 million USD capital investment, producing 60,000 tonnes/yr

Corn ethanol \$24/GJ

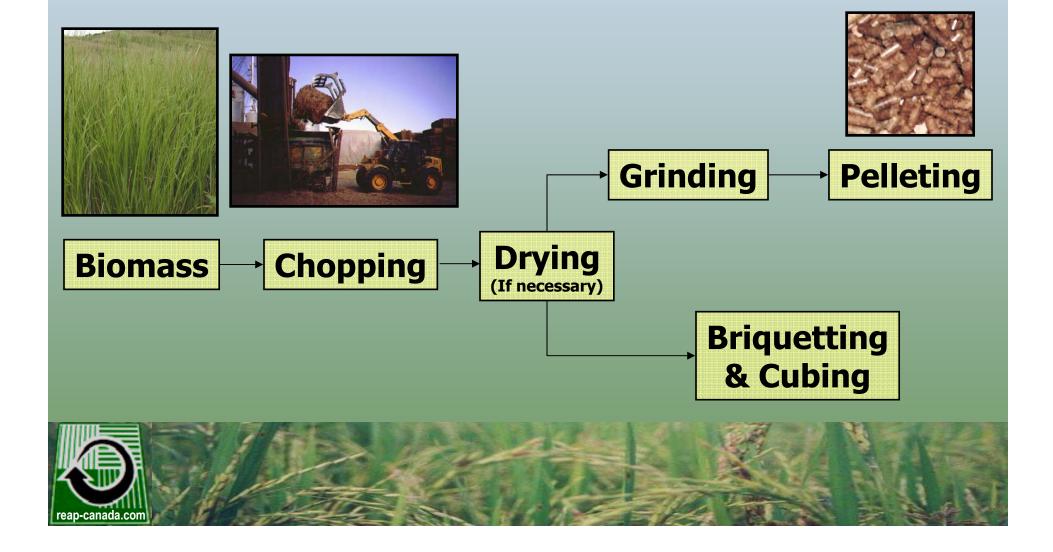
\$102 million USD capital investment, producing 200 million L/yr

Cellulosic ethanol \$263/GJ

\$500 million USD capital investment, producing 90 million L/yr

Reasons to Densify Herbaceous Biomass

Convenient for handling and storage
 Increased energy density (smaller storage and combustion systems)


Reduces fire risks

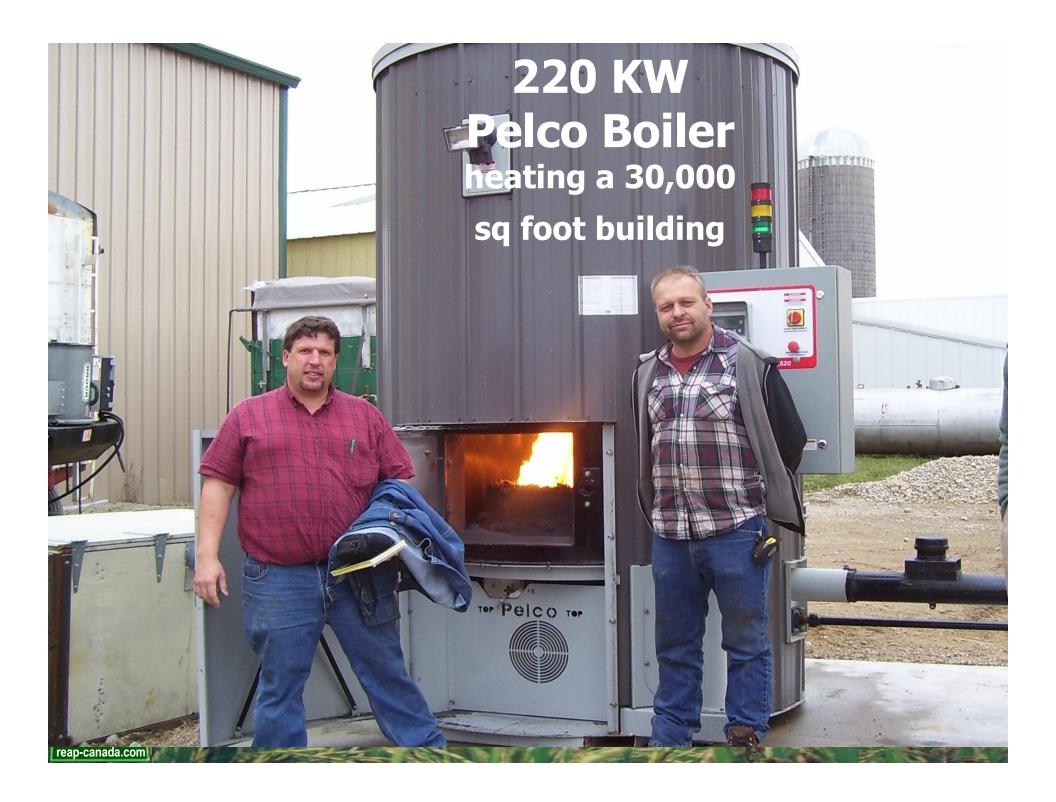
- More control over combustion
 - Higher efficiencyLower particulate load

Options for Densification of Herbaceous Biomass

WSG Biomass Quality and Combustion

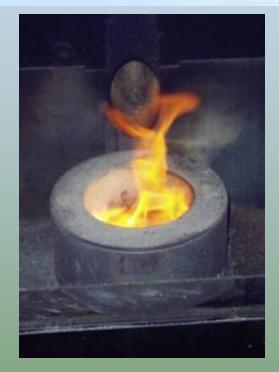
Problem:

- Main historic barrier with grasses has been high potassium (K) & chlorine (Cl)
- Causes clinker (agglomeration) problems and corrosion in boilers


Solution

 Use warm season grasses under delayed harvest management to leach chemicals
 Use advanced boiler & stove technology

Dekker Brand boilers 3 x 800 kw heating a 1.5ha greenhouse


Grovewood Heat Boiler 75 KW heating a farm complex

9kw Dellpoint Gasifier Pellet Stove

Creating clean combustion with very low particulates

- Pelleted fuel is better than bulk fuel
- Low content of K, Cl and S essential to reduce aerosol (fine particulate) formation
- Advanced Combustion technology (lamda control, condensing boiler)
- Use cyclone on combustion appliance to capture particulates

Overall, particulate load as low as heating oil is achievable

Fall Switchgrass Harvest

Harvesting Lessons Learned

- Late fall harvesting (October 25-November 15) and mid winter harvesting appear practical options in Southern Ontario and SW Quebec
- Overwintering losses (~25%) is mainly due to field breakage of vulnerable components (biomass losses are 80% seed heads, 30% leaves, 12% leaf sheaths and 4% stems).
- A new fall mow and spring harvest system appears highly promising to minimize overwintering losses and ease harvest concerns

Biomass Quality of Switchgrass vs. Wood Pellets and Wheat Straw

Unit	Wood	Wheat	Switchgrass	
	pellets	straw	Fall harvest	Overwintered Spring harvest
Energy (GJ/t)	20.3	18.6-18.8	18.2-18.8	19.1
Ash (%)	0.6	4.5	4.5-5.2	2.7-3.2
N (%)	0.30	0.70	0.46	0.33
K (%)	0.05	1.00	0.38-0.95	0.06
Cl (%)	0.01	0.19-0.51	n/a	n/a

Source: Samson et al., 2005

Ash and Energy Content of Overwintered Switchgrass

Plant Component	Ash Content	Energy Content (GJ/ODT)
Stems	1.03%	19.6
Seed Heads	2.38%	19.5
Leaf Sheaths	3.07%	18.7
Leaves	6.98%	18.4

*Overall weighted SG average ash content of 2.75% and 3.25% on sandy and clay sites respectively

Future Strategies to Improve Biomass Quality

- Increase stem content through breeding
- Can we reduce silica transport into WSG's through plant breeding?
- Can we fractionate WSG's and send stems to residential pellet markets and higher ash plant components to commercial/industrial pellet markets?

Farmland in Ontario & Quebec for Energy Crop Farming

	Land use	Land area ('000 ha)	Area for biofuels* ('000 ha)	Potential grass yield** ('000 tonnes)	Total potential grass yield ('000 tonnes)
Ontario	Crop land	2,254	450	4,192	8,883
	Forage	1,261	504	4,691	
Quebec	Crop land	940	188	1,748	5,221
	Forage	933	373	3,473	
			Ontario &	Quebec Total	14,104

*Estimated 20% crop land and 40% forage land converted to bioenergy production

**Assumed yield of 9.3 tonnes/ha

Potential for Bioenergy Production

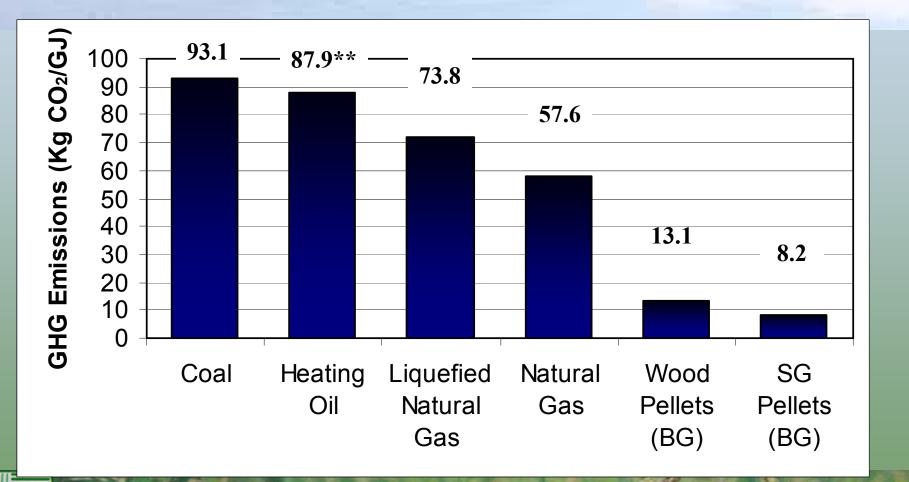
Land use	Agricultural Land (million ha)	Area for biofuel production* (million ha)	Perennial grass production** (million tonnes)	Millions Barrels of Oil Equivalent (MBOE)/day
Canada	68	13.6	80.2	.69
U.S.A.	377	75.4	610.7	5.23
North America	445	89	691	5.92

The grass farmers of North America can produce the energy equivalent of 7.2% of the worlds oil supply (82 million barrels of oil/day)

* Estimated 20% land converted to bioenergy grasses

** Assumed bioenergy hay yields of 5.9 tonne/ha in Canada and 8.1 t/ha in the US and 18.5GJ/tonne of hay

Biofuel GHG Offsets Basics

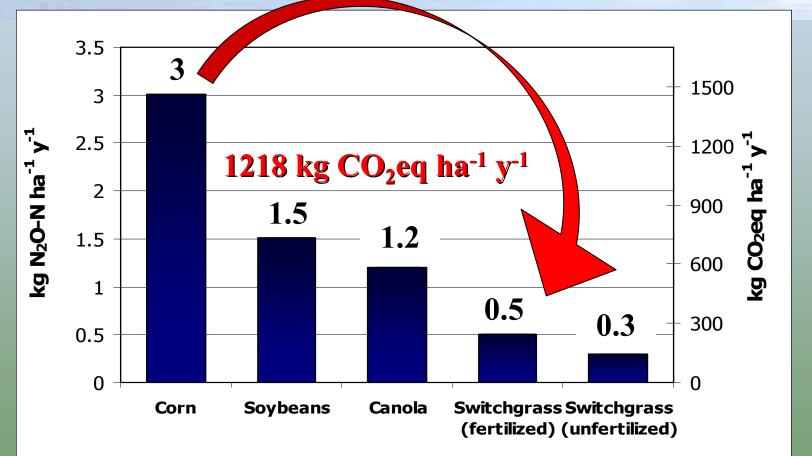

GHG offsets are a function of 2 main factors:

The total amount of renewable energy (GJ) produced/ha (solar energy collected in the field less energy lost going through the biofuel conversion process) The amount of fossil energy (GJ) used in the production of the feedstock/ha

The amount of fossil energy used to convert the raw feedstock to a processed biofuel form

Relative Carbon Intensity of Various Fuel Sources

*Based on GHGenius 3.9xls Natural Resources Canada, Samson et al., 2008 **Based on typical Canadian oil mix of 48% domestic and 52% international


Comparing Biofuels as Offset Strategies

Factors to Consider:

- Net GHG savings by replacing a fossil fuel with a a biofuel option (kg CO₂e/GJ).
- > Efficiency of the offset (%).
- The cost of incentives or subsidies for each unit energy produced (\$/GJ).
- > Cost required to offset 1 tonne of CO_2e (\$/tonne).

N₂O Emissions from Crop Production in Canada

e.g. Corn: 3 kg N₂O-N x 44/28 x 310 (CO₂ forcing value for N₂O) = 1461 kg CO2eq/ha Samson et al 2007

Biofuel Options Examined

<u>Sector</u>	Traditional Fuel		Alternative Fuel
Transportation	Gasoline	\rightarrow	Ethanol
	Diesel	\rightarrow	Biodiesel
Electrical Power	Coal Natural gas	\rightarrow	Wind energy Straw pellets
Heating	Coal Natural gas LNG	\rightarrow	Biogas Switchgrass/Wood pellets

LNG-liquefied natural gas

Transportation Sector-GHG Offsets

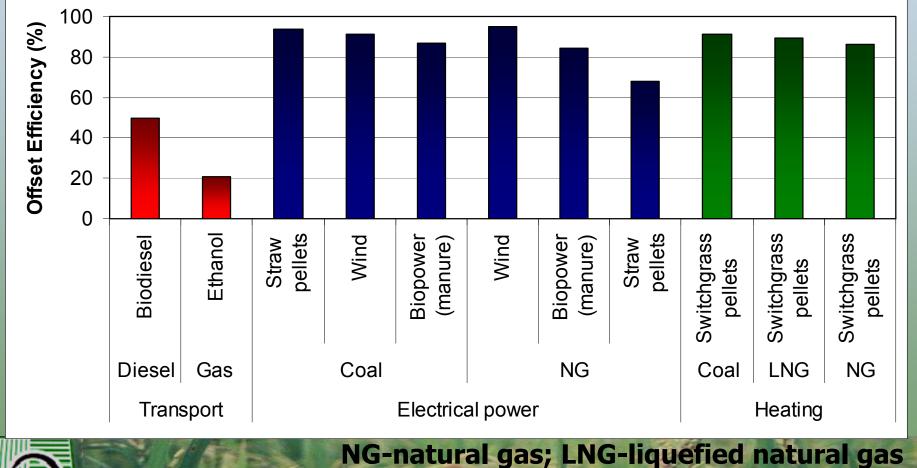
Fos	sil Fuel	Renewable Fuel		Net offset	
	kg CO ₂ e/GJ	kg CO ₂ e/GJ		(%)	
Gasoline	99.6	Corn ethanol	62.0	21	
		Cellulosic ethanol	23.4*	76	
Diesel	95.5	Soybean biodiesel	36.4	50	
		Canola biodiesel	28.8	58	

 \ast Does not include GHG emissions associated with N_2O from cultivation

Electrical Power-GHG Offsets

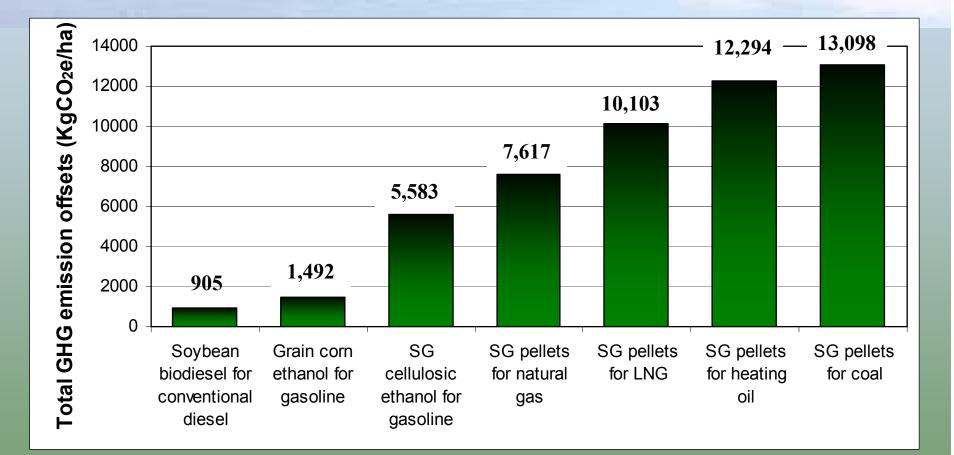
Fossi	Fossil Fuel Renewable Fue		uel	Net
	kg CO ₂ e/GJ		kg CO ₂ e/GJ	offset (%)
Coal	298.9	Wind	5.6	98
		Straw Pellets	18.9	94
		Biopower (manure)*	39.4	87
Natural gas	121.7	Wind	5.6	95
		Straw Pellets	18.9	84
		Biopower (manure)*	39.4	68

•Does not include GHG emission reductions from manure through biogas treatment



Heat Generation-GHG Offsets

Fossil	Fuel	Renewable Fuel		Net
	kg CO ₂ e/GJ	J kg CO ₂ e/GJ		offset (%)
Coal	93.1	Switchgrass pellets	8.2	91
LNG	87.9	Switchgrass pellets	8.2	89
Natural gas	57.6	Switchgrass pellets	8.2	86


Offset Efficiency of Biofuel Options

Samson et al. 2007

GHG Offsets From Ontario Farmland Using Biofuels

SG=Switchgrass; LNG=Liquefied Natural Gas

Summary

> Biofuel GHG offsets are directly linked to

- > Offset efficiency of the biofuel (GJ)
- > Energy produced (GJ) per ha of biofuel crop

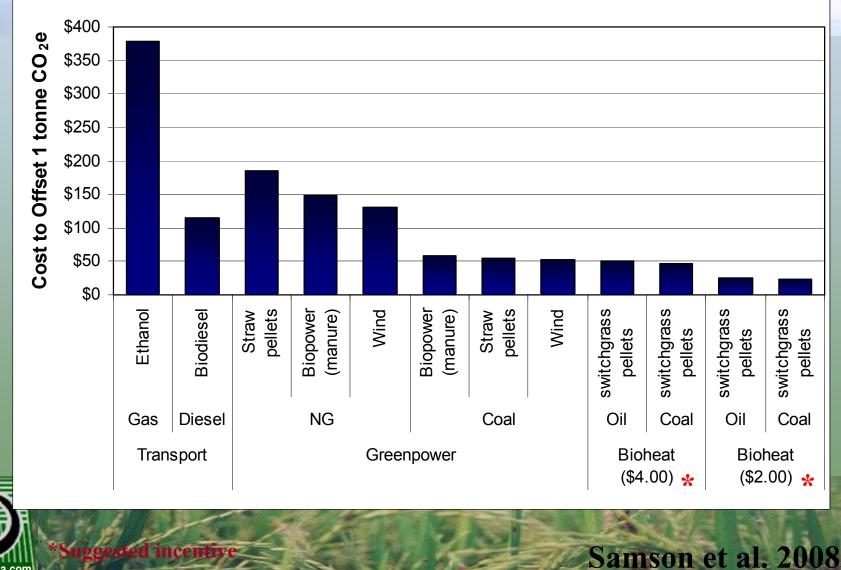
Biofuel Option	Offset efficiency	Output (GJ/ha)	Overall efficiency
Switchgrass pellets	High	High	
Switchgrass ethanol	Moderate to high	Moderate	
Corn ethanol	Low	Moderate	
Soybean biodiesel	Moderate	Low	

Renewable Energy Incentives in \$/GJ in Ontario, Canada (Samson et al.2008)

Corn Ethanol

Incentive Assumptions:

Wind Power Incentives


Bioheat Pellets

Corn Ethanol (0.021GJ/L @ \$0.168/L) based on \$0.10 federal + \$0.068 Ontario Ethanol Fund Wind Power (0.0036GJ/kwh @ \$0.055/kWh) based on \$0.01 federal + \$0.045 province of Ontario BioHeat Pellets (18.5 GJ/tonne @ \$37-\$74/t) currently no policy incentives are in place

Costs required to offset 1 tonne CO₂e with current Ont. & Federal Incentives

eap-canada.cor

Policy Instrument Options: to enable efficient bioenergy and renewable energy technologies

 Apply incentives by GJ of renewable fuel produced: \$8/GJ for liquid fuel \$15/GJ green power \$4/GJ green heat
 Best solution might be: \$25/tonne CO_{2eq} carbon tax \$25/tonne CO_{2eq} renewable carbon incentives paid to biofuel producers

Summary and Conclusions

- Warm season grasses represent the most resource efficient way to capture solar energy through crop production
- WSG biomass quality for combustion can be improved through cultural management and breeding
- Biggest emerging application is thermal energy to replace coal, natural gas and LNG

Summary (Continued)

- There are no technical barriers to develop the grass pellet industry
- There is a policy crisis in biofuel development in Canada which prevents the most efficient 2nd generation biofuel systems from emerging
- Farmers need to increase political awareness of the need to strengthen policies to support the grass pellet industry

REAP-Canada's Biomass Energy Program Sponsored by

Natural Resources Canada Ministry of Agriculture, Food and Rural Affairs

Canadian Farm Business Management Council

