GHG Mitigation Potential of Biofuels in Canada

GHG's-Why They're Important

- > Include water vapour, ozone, carbon dioxide (CO_2) , methane (CH_4) and nitrous oxide (N_2O) .
- > Occur naturally in the atmosphere and trap energy from the sun.
- > Without them, Earth's temperature would be 33°C lower.
- Human activities are increasing GHG's.

What is a GHG Offset?

- > A reduction or avoidance in GHG emissions in one place in order to "offset" emissions somewhere else.
- > GHG's differ in their "global warming potential"their ability to absorb heat in the atmosphere.

Greenhouse Gas	100 yr-GWP
Carbon Dioxide-CO ₂	1
Methane-CH ₄	23
Nitrous Oxide-N ₂ O	296

Expressed in CO₂ equivalents

Biofuel GHG Offsets Basics

GHG offsets are a function of 2 main factors:

The total amount of renewable energy (GJ) produced/ha (solar energy collected in the field less energy lost going through the biofuel conversion

process)

The amount of fossil energy (GJ) used in the production of the feedstock/ha

The amount of fossil energy used to convert the raw feedstock to a processed biofuel form

Comparing Biofuels as Offset Strategies

Factors to Consider:

- Net GHG savings by replacing a fossil fuel with a a biofuel option (kg CO₂e/GJ).
- > Efficiency of the offset (%).
- The cost of incentives or subsidies for each unit energy produced (\$/GJ).
- > Cost required to offset 1 tonne of CO_2e (\$/tonne).

N₂O Emissions Problem

- Canadian models estimating GHG for biofuels from agriculture crops do not include N₂O emissions.
- > Annual crops take up less than 50% of applied nitrogen (N) fertilizer.
- Remaining N results in nitrate losses to water or gaseous N to the atmosphere.
- Need to examine N₂O emissions from annual grains and oilseeds used for biofuels.

N₂O Emissions from Crop Production in Canada

e.g. Corn: 3 kg N₂O-N x 44/28 x 310 (CO₂ forcing value for N₂O) = 1461 kg CO2eq/ha Samson et al 2007

Biofuel Options Examined

<u>Sector</u>	Traditional Fuel		Alternative Fuel
Transportation	Gasoline	\rightarrow	Ethanol
	Diesel	\rightarrow	Biodiesel
Electrical Power	Coal		Wind energy
	Natural das	\rightarrow	Straw pellets
	rtacarar gao		Biogas
Heating	Coal Natural gas LNG	\rightarrow	Switchgrass/Wood pellets

LNG-liquefied natural gas

Relative Carbon Intensity of Various Fuel Sources

*Based on GHGenius 3.9xls Natural Resources Canada, Samson et al., 2007 **Based on typical Canadian oil mix of 48% domestic and 52% international

Transportation Sector-GHG Offsets

Fos	sil Fuel	Renewable Fuel		Net offset
	kg CO ₂ e/GJ		kg CO ₂ e/GJ	(%)
Gasoline	99.6	Corn ethanol	62.0	21
		Cellulosic ethanol	23.4*	76
Diesel	95.5	Soybean biodiesel	36.4	50
		Canola biodiesel	28.8	58

* Does not include GHG emissions associated with $\rm N_2O$ from cultivation

Electrical Power-GHG Offsets

Fossi	l Fuel	Renewable Fuel		Net
	kg CO ₂ e/GJ		kg CO ₂ e/GJ	offset (%)
Coal	298.9	Wind	5.6	98
		Straw Pellets	18.9	94
		Biopower (manure)*	39.4	87
Natural gas	121.7	Wind	5.6	95
		Straw Pellets	18.9	84
		Biopower (manure)*	39.4	68

•Does not include GHG emission reductions from manure through biogas treatment

Heat Generation-GHG Offsets

Fossil	Fuel	Renewable Fuel		Net
	kg CO ₂ e/GJ		kg CO ₂ e/GJ	
Coal	93.1	Switchgrass pellets	8.2	91
LNG	87.9	Switchgrass pellets	8.2	89
Natural gas	57.6	Switchgrass pellets	8.2	86

Offset Efficiency of Biofuel Options

reap-canada.com

Samson et al. 2007

GHG Offsets From Ontario Farmland Using Biofuels

SG=Switchgrass; LNG=Liquefied Natural Gas

Summary

> Biofuel GHG offsets are directly linked to

- > Offset efficiency of the biofuel (GJ)
- > Energy produced (GJ) per ha of biofuel crop

Biofuel Option	Offset efficiency	Output (GJ/ha)	Overall efficiency
Switchgrass pellets	High	High	
Switchgrass ethanol	Moderate to high	Moderate	
Corn ethanol	Low	Moderate	
Soybean biodiesel	Moderate	Low	

Thank You!

WWW.REAP-CANADA.COM

REAP-Canada's Biomass Energy Program Sponsored by

Natural Resources Canada Ministry of Agriculture, Food and Rural Affairs

Canadian Farm Business Management Council

