The Noflay Stove: An Advanced, Low-Cost Clay Brick Stove

Rebecca Chin, Audrey Yank, Benjamin Stevenson, Brett Snider, Maxime Ouellet-Payeur, Adama Sow, Sitelle Cheskey, Meredith Kushnir, Roger Samson

January 26, 2013 ETHOS 2013 REAP-CANADA www.reap-canada.com

Introduction

 REAP is working in the Gambian and Senegalese border area since 2004

- In West Africa:
 - Wood >90% of energy requirements
 - Deforestation
 - Soil erosion

Deforestation: Border area of Gambia/Senegal

Fuelwood Demands


- Fuelwood collection:
 - 2.3h/day by women in Wack Ngouna, Senegal

- Problems of deforestation and fuelwood collection
 - → reduce fuelwood consumption
 - increase tree planting and protection

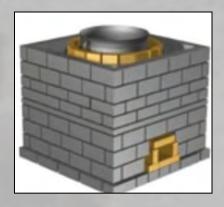
REAP Stove Experiences in West Africa Evolution

- 5000 Mayon Turbo Rice Hull / Groundnut Shell Stoves (MTS) (2004-2013)
 - Well received but expensive (\$20)
 - Lots of tending for the long cooking cycles of West Africa
- 250 Bucket Rocket Stoves (2005-2010)
 - Well received but expensive (\$15)
 - Somewhat undersized
 - Weak on longevity
- 2000 Noflay Clay Brick Stoves (2012-2013)
 - \$10
- All these stoves were sold at a market price of \$5 in rural communities

Brick Stove Design Evolution

- Local 24 Brick Rocket Stove (2010)
 - Our first attempt at a low cost clay brick stove
 - Problems of excess air and no preheated air
 - Lack of clean combustion and low heat transfer
 - Walls vulnerable to being pushed out by heavy

pots



Advanced Clay Stove Designs

- Positive features of Esperanza and the Lion stoves
 - Low excess air
 - Improved heat transfer
 - preheated and multiple entry sources for primary air

- → Best fit for Senegalese/Gambian households: Esperanza stove
 - A cultural and technological manufacturing leap
 - Expensive and material intensive to produce and transport

Objectives of Noflay Stove

Technical Issues

- Create a low cost design compared to existing metal or advanced clay stoves
- ↓ fuelwood consumption
- ↓ indoor air pollution
- Have good stove longevity

Social issues

- Have high cultural acceptance
- Promote local entrepreneurship and skill development
- Reduce drudgery on rural women

Original Noflay Prototype

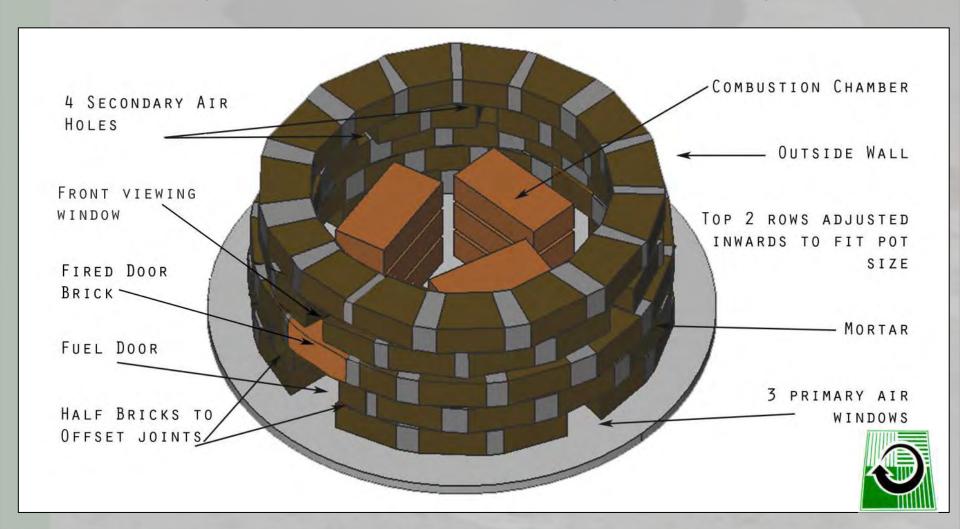
- Produced September 2011 in Gambia
 - Used readily available housing bricks to prototype combustion chamber and shroud
 - Performance appeared promising
 - But using conventional bricks was a problem!

Combustion Chamber Brick Production

 The best high quality clay is sourced and the bricks are fired in a kiln

Shroud Brick Production

100% high quality clay or local clay and lime


may be used

Noflay Design Evolution (Jan 2013)

"Noflay" = 'convenience', 'easy' or 'no problem'

Element #1: Combustion chamber

- Fired bricks (9 in total)
 stacked to 20 cm height
- Open triangular shape encloses the fire
 - Good flame formation
 - Good residence time
- Achieves high temperatures:
 - Incoming preheated air
- Provides a stable pot support

Element #2: Shroud

- Custom built to create a 1.5cm gap to the pot
- Unfired bricks used to save \$
- Small front door minimizes cold air entry into the combustion chamber
- Viewing window to monitor the fire
- Is an excellent wind screen
- Provides outstanding safety

How is the Primary Air Preheated?

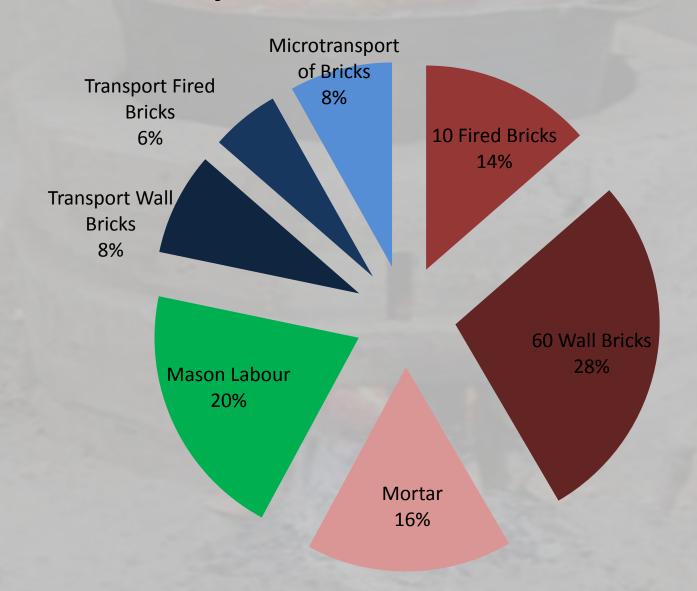
- Size of front door limited
- 3 primary air holes are nonaligned with combustion chamber and provides counterflow
- Space between combustion chamber bricks allows air to enter
- Gap between shroud and combustion chamber allows air to preheat

Secondary Combustion

 Air holes are created in the 4th row to allow for more complete burning of the gases

Preliminary Results: Cooking and Fuel

Boils 5 liters of water in 17-20 min.


Saves fuel (early feedbacking ~ ⅓ – ½ reduction)

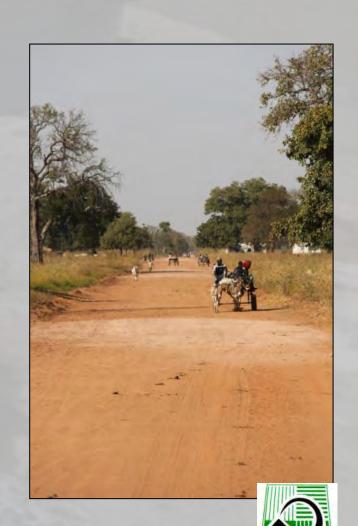
Can use much smaller pieces of fuel (shrub branches/bark)

 Low particulate load relative to 3 stone fire ("no more tears in the kitchen")

Preliminary Cost Breakdown: ~\$10

Training the local team

- Men and women farmers learn the brick making techniques rapidly and can produce ~200 bricks per day
- Best to use teams of local masons who can build 5 stoves per person per day
- Closely monitor the stove installations for creating correct gap and using good mortar mix


High Cultural Acceptance

- The cookstove is intuitive to use and easy to operate
- Fuel savings and wider fuel diversity greatly appreciated
- Speed, low tending requirement, low smoke and safety all commonly reported

Environmental Sustainability

- Reduces fuelwood consumption by 1/3rd to 1/2 thereby protecting landscape ecology
- Reduced particulate loading
- Low material consumption and all local natural materials (No fossil energy requirement or steel)
- Most transport can be done using horse/donkey cart

Social Sustainability

- Money is retained in the community & supports local rural jobs
- Brick makers & masons advance skills & entrepreneurship
- Women & men can partake in the activity
- Less conflict over fuel gathering

Next Steps

- Complete in-field emissions testing and lab testing at McGill University, Montreal
- Scale up from 2000 to 10,000 Noflay stoves per year
- Make incremental improvements in the design, brick production and stove installation
- Develop the business model to strengthen the "clay economy" by using the kilns for other household applications (house bricks, floor tiles)

For more information:

reap-canada.com Growing Green Prosperity Cultiver la prospérité verte

REAP's Stove Development work has been supported by:

Canadian International Development Agency (CIDA) Department of Foreign Affairs and International Trade (DFAIT) N.A. Taylor Foundation